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1 Summary

Seabed classification, the inference of physical properties of the sea bottom from
multi-beam bathymetric sonar, is generally attempted by analysis of backscat-
ter amplitudes, a concept which is successfully applied to side-scan sonar data.
Backscatter from multi-beam bathymetric sonars, however, involves several differ-
ent physical scattering processes that depend on the angle of incidence of the sonar
beam, and which have to be accurately modeled in order to obtain a normalized
brightness image of the scattering surface. This is a classical inverse problem in
which some a-priori knowledge of the physical properties of the surface and its
orientation relative to the instrument platform is required in order to obtain a first
order model.

Commercial systems are available that use a different approach: Multivariate
statistical analysis of sonar returns, is taken in order to classify single-beam echo-
sounder data

Such a system can perform what has been termedun-supervisedclassification
by cluster analysis: Signals are grouped into classes according to their statistical
properties. For very much the same reasons, the simple statistical approach fails
with multi-beam data; returns from different angles of incidence, and thus different
scattering domains, exhibit very different statistics.

The method presented in this report may be rightfully claimed by both the arti-
ficial neural-network (ANN) research community and those investigating general-
ized sub-space methods. Accordingly, the terminology varies with the perspective
one wants to adopt. In ANN terminology the classification system proposed in
this interim report employs a series of associative memories (linear NNs) which
vote independently on a beams membership in one particular class. Votes are then
subjected to a fuzzy decision rule which determines to which class, if any, the
multi-beam return belongs.

With the limited test data available we have confirmed that the method :

2 gathers returns from different scattering domains into one class.

2 classifies beams, independent of their incidence angle.

2 preserves the spatial resolution of the multi-beam dataset.

2 is computationally feasible on a small workstation requiring minutes to load
the memories with training-sets and fractions of a second to classify a beam.

2 degrades in a gradual controlled way with increasing noise levels.

We now need to show, that this method actually classifies acoustic diversity
related to the physical properties of the sea-bottom. A dataset collected over a
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region with known sea-bottom geology and distinct geological features is needed
to draw further conclusions.

2 Outline of the algorithm

2.1 Detection

Isolating the bottom return in each individual beams´s recording is not a trival
task. Figure 1 shows full-waveform data from the 103 beams of a RESON SeaBat
8101 system and it is obvious that signal to noise ratios for far-angle beams are
generally marginal (the nadir beam for an even bottom would be at zero). The full
waveform was recovered from amplitude envelope and instantaneous phase data,
which the SeaBat is able to record. The original 240 kHz carrier frequency is not
present in the data, the frequency spectrum is shifted towards the origin, probably
by subsampling.

To provide meaningful input to a classification algorithm, detection becomes a
task of isolatingand selectingreturns which have sufficiently high signal to noise
ratios. This is particularly important for the generation of training-sets, since noise-
dominated signals will invariably bias the associative memories. Detection of a re-
turn can be viewed as a two step process. The noise level is estimated on a sample
by sample basis, from the begin of the recording. Whenever a sample amplitude
exceeds the adaptive noise threshold, a parametric spectrum at that particular in-
stant in time is estimated. If sufficient power is present in the expected frequency
band, the onset of a signal return is assumed. Relatively good control over signal
quality can be exercised by introducing a factorδ > 1 by which the signal am-
plitude has to be above the current noise level in order to qualify for a detection.
Figure 2 shows a multi-beam profile with light-grey dots marking the footprints of
available beams. The dark-grey dots show beams which were actually detected as
“suitable” for further processing and it is no surprise that mostly wide-angle beams
have been discarded.

2.2 Abstraction

Conventional algorithms capitalizing on statistical properties of sonar backscatter
returns usually employ a layer of abstraction from the original time-domain data.
The process of abstraction often involves the generation of a feature data-base. In
a face recognition application, for example, one feature may be the distance of the
eyes, another the relation of that distance to the length of the nose. Features of time
domain data may use a subset of Fourier- or Wavelet-transform coefficients as part
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Figure 1: Full-waveform data from a Reson SeaBat Ping. Beam number zero is
nadir beam. Times are in seconds x 10.
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Figure 2: Beam footprints of a survey line. Light-grey dots mark available beams,
dark-grey dots mark beams of satisfactory S/N. Depth contours are generated from
travel-times of dark-grey dotted beams.
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of an abstract representation of the data. Commonly associated with the genera-
tion of abstract features is a reduction of the data and their variance in a statistical
sense. This abstraction process depends on good knowledge with respect to which
features are relevant in a classification task and which are not.

Since relatively little is known

Figure 3: Time-Frequency representation of a
sonar return

about the statistics of backscat-
tering, this approach is simply
not feasible for multi-beam sonar
data. In fact, the proposed method
seeks to increase the data vari-
ance, trusting, that the associa-
tive memories will lock on to
the most salient views of the
data. The capability of asso-
ciative memories to generate and
retain salient views has been very
well demonstrated with object
recognition applications.

Each individual return is transformed into a high-resolution time-frequency im-
age, a three-dimensional representation of the evolution of the signal´s spectrum
over the timespan it exists. An example is shown in figure 3. Those time-frequency
images are the entities which are then employed in the classification algorithm.

3 Network architecture

In sea-bed classification the number of different acoustic classes mapped during a
survey will generally be very limited. A system that is capable of discriminating
10 bottom-types in any particular survey would be satisfactory for all practical pur-
poses. With only a small number of classes, it is possible to employ one associative
memory for each individual class.

An echo-return is then presented to every one of those associative memories
and the response would merely indicate whether this return is similar to the returns
the memory was trained with or not. Votes from all memories are then presented to
a fuzzy decision rule, which ultimately assigns class membership of the echo and
a level confidence for that decision. Figure 4 shows a schematic diagram of the
classification network.
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4 Training and Classification

Associative memories do not require a large number of training samples to load.
In the example given below,

Associative
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Figure 4: Schematic of classification algorithm

about 300 beams were used in
the training sets, but less than
100 are actually required to load
each class memory. Associa-
tive memories are different from
other types of artificial neural
networks in that there is no it-
erative error-back-propagation
in the training procedure for ex-
ample. Presenting the memory
with a new training sample ba-
sically results in an update pro-
cess quite similar to subspace
tracking methods employed in
adaptive array processing. The
computational complexity is roughly

of O(N2), whereN = p × q, with p and q being the dimensions of the time-
frequency image submitted for each beam.

The classification phase differs from training mainly in the fact, that no update
is performed on the memories. It is however possible to interweave classification
and training in order to implement a form of re-enforcement learning. Samples
presented for classification, which qualify with high confidence values for a par-
ticular class, could be used to update and re-enforce the memory associated with
that class. The effects of memory re-enforcement have not been investigated at this
time.

The architecture of the classifier presented in this report is inherently parallel
and real-time classification would be feasible on a multi-processor system. On a
single processor AMD K6-400 equipped computer under LINUX, classification of
a single beam return takes about200ms. Updating a class memory with a single
beam return during the training phase can take up to 2 seconds on the same com-
puter.
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5 An Example

Three training sets were selected from more or less arbitrary contiguous regions of
the survey line in figure 2. Those beam subsets are shown in figure 5 with red, blue
or green colored dots respectively. Training sets “green” and “blue” reach across
the whole swath and contain 4 pings each. Training set “red” contains off-nadir
beams only. No background information about the sea-bottom geology was avail-
able, the red, blue and green areas are most likely totally unrelated to variations in
the sea-floor and do not represent a true acoustic class. This somewhat artificial
setup serves only one purpose: Any classification algorithm should recognize and
classifiy members of the training-sets correctly within a larger data set.

The classification result is shown in figure 6. With the exception of a few
beams, all data from the training sets have been classified correctly. The exceptions
may serve to point out that the proposed classification scheme is a competitive one.
Class memories virtually compete for a sample, which is presented to them. When-
ever classes overlap in their statistical distribution, the fuzzy classifier assigns the
most likely class membership. Consequently a training set member may end up in
a different class whenever its statistics resemble the foreign class more closely.

The apparent dominance of class “red” in the classified profile is to some de-
gree an illusion created by overlapping dots:red dots were plotted last, on top of
the blue and green ones. A final processing step will remove that artifact.

5.1 Spatial relationships

So far, the classification scheme is spatially “un-aware”, i.e. the spatial relation-
ships of neighboring beams are not considered. Beams may be classified in any
random order. Since it can be expected that sea-bottom geology is uniform over
contiguous regions, that a-priory knowledge should be represented in a classifica-
tion scheme. This is accomplished in a very straight-forward manner. The geo-
referenced and classified field of beams is spatially filtered. The filter weights are
the confidence values accompanying each class assignment. The class member-
ship of an individual beam thus becomes dependent on the class membership of its
neighbors weighted by the respective confidence values. The spatial filter can at
the same time be used for a reduction of the data, as it has been done in the example
shown in figure 7.
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Figure 5: Location of the training sets “red”, “blue” and “green”.
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Figure 6: The line after all beams have been classified. The training sets are clas-
sified correctly. Any remaining black dots designate “no class”, their confidence
level was to small to warrant a classification.
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The highest confidence values (biggest circles) occur within the training sets.
This just confirms the earlier conclusion, that the network is well suited to recog-
nize patterns it has been trained with. Outside the training sets the result is less
conclusive. Obviously class “green” and class “blue” have very similar properties.
Beam by beam classification as shown in figure 6 results in interspersed green and
blue dots. When confidence values and neighboring beams are considered as in
figure 7, class “blue” wins over “green” almost anywhere outside the training sets,
due to higher confidence values. The filtered result in figure 7 now also shows a
clear preference of “blue” for nadir and near-nadir beams, while “red” dominates
the beams with greater incident angles. The “red” training set did not contain any
nadir exemplars and it is rather a surprise that in the north-west and south-east parts
of the line, some of the nadir beams nevertheless classify “red”.

However, the general behavior, that, with statistically very in-homogenous, ar-
bitrary classes, which most likely overlap, the system locks on to whatever salient
differences remain, is rather promising.

contact@arescon.com
www.arescon.com10



Figure 7: Spatially “aware” classification. Neighbors have a vote, weighted by their
own confidence value, to decide a beams class membership. Circle size represents
confidence level. Class “green” looses competition with class “blue” outside the
training set.
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